Posts Tagged ‘atomic’

Scientists in Need of Arts Training

How can universities train our scientists, technologists and engineers to engage with society rather than perform as cogs in the engine of economic development? Author Richard Lachman asks for educational system to require STEM students to take art and humanities courses, not as an attempt to “broaden minds” but as a necessary discussion of morals, ethics and responsibility.

The post Scientists in Need of Arts Training appeared first on Social Science Space.

Groundbreaking graphene sieve lets you drink seawater

In a breakthrough that could aid the millions of people living in areas lacking access to a supply of clean drinking water, researchers from the University of Manchester have developed a sieve make from graphene that could be used to efficiently filter salt out of seawater. The sieve, which is detailed in the latest issue […]

The post Groundbreaking graphene sieve lets you drink seawater appeared first on Redorbit.

Quantum mechanics as an emergent property of space-time.

Is the quantization of energy/mass a fundamental or an emergent characteristic of reality. Quantum mechanics assumes that it is fundamental because it defines all interactions within it in terms of its quantized properties while one could say that Einstein’s General Theory of Relativity defines it in terms of an emergent property of continuous space-time manifold […]

Tracking the ultrafast motion of a single molecule by femtosecond orbital imaging

Watching a single molecule move on its intrinsic timescale has been one of the central goals of modern nanoscience, and calls for measurements that combine ultrafast temporal resolution with atomic spatial resolution. Steady-state experiments access the requisite spatial scales, as illustrated by direct imaging of individual molecular orbitals using scanning tunnelling microscopy or the acquisition of tip-enhanced Raman and luminescence spectra with sub-molecular resolution. But tracking the intrinsic dynamics of a single molecule directly in the time domain faces the challenge that interactions with the molecule must be confined to a femtosecond time window. For individual nanoparticles, such ultrafast temporal confinement has been demonstrated by combining scanning tunnelling microscopy with so-called lightwave electronics, which uses the oscillating carrier wave of tailored light pulses to directly manipulate electronic motion on timescales faster even than a single cycle of light. Here we build on ultrafast terahertz scanning tunnelling microscopy to access a state-selective tunnelling regime, where the peak of a terahertz electric-field waveform transiently opens an otherwise forbidden tunnelling channel through a single molecular state. It thereby removes a single electron from an individual pentacene molecule’s highest occupied molecular orbital within a time window shorter than one oscillation cycle of the terahertz wave. We exploit this effect to record approximately 100-femtosecond snapshot images of the orbital structure with sub-ångström spatial resolution, and to reveal, through pump/probe measurements, coherent molecular vibrations at terahertz frequencies directly in the time domain. We anticipate that the combination of lightwave electronics and the atomic resolution of our approach will open the door to visualizing ultrafast photochemistry and the operation of molecular electronics on the single-orbital scale.

Atomic model for the membrane-embedded VO motor of a eukaryotic V-ATPase

Vacuolar-type ATPases (V-ATPases) are ATP-powered proton pumps involved in processes such as endocytosis, lysosomal degradation, secondary transport, TOR signalling, and osteoclast and kidney function. ATP hydrolysis in the soluble catalytic V1 region drives proton translocation through the membrane-embedded VO region via rotation of a rotor subcomplex. Variability in the structure of the intact enzyme has prevented construction of an atomic model for the membrane-embedded motor of any rotary ATPase. We induced dissociation and auto-inhibition of the V1 and VO regions of the V-ATPase by starving the yeast Saccharomyces cerevisiae, allowing us to obtain a ~3.9-Å resolution electron cryomicroscopy map of the VO complex and build atomic models for the majority of its subunits. The analysis reveals the structures of subunits ac8c′c″de and a protein that we identify and propose to be a new subunit (subunit f). A large cavity between subunit a and the c-ring creates a cytoplasmic half-channel for protons. The c-ring has an asymmetric distribution of proton-carrying Glu residues, with the Glu residue of subunit c″ interacting with Arg735 of subunit a. The structure suggests sequential protonation and deprotonation of the c-ring, with ATP-hydrolysis-driven rotation causing protonation of a Glu residue at the cytoplasmic half-channel and subsequent deprotonation of a Glu residue at a luminal half-channel.

Powered by WordPress | Designed by: video game | Thanks to search engine optimization, seo agency and Privater Sicherheitsdienst